Acarinina topilensis

Classification: pf_cenozoic -> muricate non-spinose -> Truncorotaloididae -> Acarinina -> Acarinina topilensis
Sister taxa: << < A. mckannai, A. medizzai, A. nitida, A. pentacamerata, A. praetopilensis, A. primitiva, A. pseudosubsphaerica, A. pseudotopilensis, A. punctocarinata, A. quetra, A. rohri, A. sibaiyaensis, A. soldadoensis, A. strabocella, A. subsphaerica, A. topilensis, A. wilcoxensis, A. sp.,


Citation: Acarinina topilensis (Cushman 1925)
Rank: Species
Basionym: Globigerina topilensis
Taxonomic discussion: Originally described from the middle Eocene of Mexico, this taxon has since been shown to have an essentially global (sub)tropical distribution. With its distinctly angulo-conical test, disjunct (ante)penultimate chamber margins, wedge/cuneate shaped and strongly muricate terminal chamber(s), “supplementary” apertures along spiral sutural margins and relatively short stratigraphic range, it is one of the most distinctive middle Eocene taxa.
The main question regarding this taxon is its ancestry which bears in turn upon the limits of variability and stratigraphic range of possible ancestral morphotypes. Blow (1979, p. 1043-1045) created the taxon G. (T.) topilensis praetopilensis (said to have evolved from Acarinina pseudotopilensis) and viewed it as directly ancestral to topilensis. Differentiation was made primarily on the basis of the more involute coiling pattern, smaller umbilicus, less well developed murical ornament along the peripheral margin of the later chambers, and less well developed/pronounced chamber separation in the (ante)penultimate chambers.
Pearson (1990) and Pearson and others (1993, p. 124) viewed the evolution of this taxon in a similar fashion except that pseudotopilensis, rather than Blow’s praetopilensis, was viewed as the direct ancestor of topilensis. Reference to Pearson and others (1993, pl. 1, figs. 13-15) shows that their concept of pseudotopilensis is closer to Blow’s (1979, pl. 178, figs. 6-9; pl. 169, figs. 1-7, 9, and, in particular, 8 [=holotype] praetopilensis and/or Acarinina mcgowrani n. sp., are distinctly different from Subbotina’s (1953, pl. 21, figs. 8a-c [=holotype], 9a-c; pl. 22, figs. 1a-2c) pseudotopilensis from the Zone of conical globorotaliids (=Zones P6b-8 of Berggren and others, 1995). Pearson (1990) made the observation that the strongly anguloconical (truncorotaloid) character of the last chamber arises only in fully adult specimens (being absent in smaller size fractions) so that when the last chamber is lost or broken this taxon is indistingushable from “pseudotopilensis”. (We would agree except that we believe it is with praetopilensis that differentiation should be made.) The taxon pseudotopilensis has its FAD in Zone E1 and does not range into stratigraphic levels as high as Zones P11-
12 (=E9-11) from which “pseudotopilensis” of Pearson and others (1993) was illustrated. [Berggren et al. 2006]

Catalog entries: Globigerina topilensis;
Truncorotaloides libyaensis;

Type images:

Short diagnosis: Distinguished by its distinctly inflated, anguloconical, ‘truncorotaloid’ chambers and strongly compressed, angulate and disjunct (ante)penultimate chamber(s) rimmed by thick, blunt circum-cameral muricocarinae and sutural “supplementary” apertures on spiral side.

NB The short diagnoses are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus. They have initially been copied from the diagnostic characters/distinguishing features sections of the Eocene and Paleocene Atlases, they will be edited as the site is developed.


Diagnostic characters: Distinguished by its distinctly inflated, anguloconical, ‘truncorotaloid’ chambers and strongly compressed, angulate and disjunct (ante)penultimate chamber(s) rimmed by thick, blunt circum-cameral muricocarinae and sutural “supplementary” apertures on spiral side. [Berggren et al. 2006]

Wall type: Strongly muricate, nonspinose, normal perforate. [Berggren et al. 2006]

Test morphology: Subquadrate, lobulate peripheral outline; 3½ - 4½ chambers on umbilical side, increasing rapidly in size, laterally angulate, ante-and penultimate chamber(s) strongly flattened along peripheral margin giving distinctly cuneate or mitriform shape; sutures strongly incised, radial and straight to weakly curved depending on degree of compression of adjacent chambers resulting in disjunct/incised chamber separation; umbilicus narrow, deep; aperture a raised, umbilical-extraumbilical arch bordered by a thin lip; approximately 10 chambers in 2 - 2½ whorls on spiral side; chambers radially elongate, lunate/semicircular, last chamber often wedge shaped/cuneate; sutures curved, depressed; peripheral margin marked by concentration of (on some individuals large, blunt) muricae; supplementary apertures, bordered by raised rims, visible along spiral suture margin(s); planoconvex in edge view; early chambers of last whorl subrounded to subacute, (pen)ultimate chambers strongly anguloconical. [Berggren et al. 2006]

Size: Maximum diameter of holotype 0.34 mm, thickness 0.24 mm. [Berggren et al. 2006]

Character matrix

test outline:Subquadratechamber arrangement:Trochospiraledge view:Planoconvexaperture:
umb chamber shape:Inflatedcoiling axis:Lowperiphery:N/Aaperture border:Thin lip
sp chbr shape:Inflatedumbilicus:Wideperiph margin shape:Subangularaccessory apertures:Sutural
umbilical or test sutures:Strongly depressedumb depth:Deepwall texture:Coarsely muricateshell porosity:Finely Perforate: 1-2.5µm
spiral sutures:Strongly depresseddiameter mm:0.34width mm:breadth mm:0.24
final-whorl chambers:4.0-4.0

Biogeography and Palaeobiology

Geographic distribution: Widely distributed in the Caribbean, North and South Atlantic, Indo-Pacific and Tethyan/Mediterranean regions; rare in North Caucasus sections. [Berggren et al. 2006]
Aze et al. 2011 summary: Low to middle latitudes; based on Berggren et al. (2006b)

Isotope paleobiology: Oxygen and carbon isotope evidence suggests a mixed layer habitat (Pearson and others, 2001). Boron isotope data (Pearson and Palmer, 1999) supports this interpretation. [Berggren et al. 2006]
Aze et al. 2011 ecogroup 1 - Open ocean mixed-layer tropical/subtropical, with symbionts. Based on very heavy δ13C and relatively light δ18O. Sources cited by Aze et al. 2011 (appendix S3): Pearson et al. (1993, 2001a)

Phylogenetic relations: Evolved from Acarinina praetopilensis in E10 and gave rise to A. rohri. [Berggren et al. 2006]

Biostratigraphic distribution

Geological Range:
Notes: Zone E10 to mid Zone E12. [Berggren et al. 2006]
Last occurrence (top): within E11 zone (40.40-41.89Ma, top in Bartonian stage). Data source: Eocene Atlas
First occurrence (base): within E10 zone (41.89-43.23Ma, base in Lutetian stage). Data source: Eocene Atlas

Plot of occurrence data:

Primary source for this page: Berggren et al. 2006 - Atlas of Eocene Planktonic Foraminifera, chapter 9, p. 319


Aubert, J., (1963). Les Globorotalia de la region prerifaine (Maroc septentrional). Notes du Service Geologique du Maroc, 21: 41-91.

Berggren, W.A., (1977). Atlas of Palaeogene Planktonic Foraminifera: some Species of the Genera Subbotina, Planorotalites, Morozovella, Acarinina and Truncorotaloides. In: Ramsay, A.T.S. (Editor), Oceanic Micropaleontology. Academic Press, London, pp. 205-300.

Berggren, W.A.; Kent, D.V.; Swisher, I., C.C. & Aubry, M.-P., (1995). A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A. et al. (Editors), Geochronology, Time Scales and Global Stratigraphic Correlations. SEPM (Society for Sedimentary Geology) Special Publication No. 54.

Berggren, W.A.; Pearson, P.N.; Huber, B.T. & Wade, B.S., (2006). Taxonomy, biostratigraphy, and phylogeny of Eocene Acarinina. In: Pearson, P.N. et al. (Editors), Atlas of Eocene Planktonic Foraminifera, Cushman Foundation Special Publication 41. Allen Press, Lawrence, Kansas, pp. 257-326.

Bermudez, P.J., (1961). Contribucion al estudio de las Globigerinidea de la region Caribe-Antillana (Paleoceno-Reciente). Mem. III Congreso Geol. Venez. Editorial Sucre, Caracas, 1119-1393 pp.

Blow, W.H., (1979). The Cainozoic Globigerinida: A study of the morphology, taxonomy, evolutionary relationships and stratigraphical distribution of some Globigerinida (mainly Globigerinacea). E. J. Brill, Leiden, 1413 pp.

Bolli, H.M., (1957). Planktonic foraminifera from the Eocene Navet and San Fernando formations of Trinidad. In: Loeblich, A.R., Jr. et al. (Editors), Studies in Foraminifera: U.S. National Museum Bulletin 215. U.S. Government Printing Office, Washington, D.C., pp. 155-172.

Cushman, J.A., (1925). An Eocene fauna from the Moctezuma River, Mexico. Bulletin of the American Association of Petroleum Geologists, 9(2): 298-301.

Hamilton, E.L. & Rex, R.W., (1959). Lower Eocene phosphatized Globigerina ooze from Sylvania Guyot. U. S. Geological Survey Professional Paper, 260-W: 785-798.

Howe, H.V., (1939). Louisiana Cook Mountain Eocene foraminifera. Bulletin of the Geological Survey of Louisiana, 14: 1-122.

Jenkins, D.G., (1971). New Zealand Cenozoic Planktonic Foraminifera. New Zealand Geological Survey, Paleontological Bulletin, 42: 1-278.

Khoudary 1977 [sorry, not in our bibliography yet]

Miller, K.G.; Berggren, W.A.; Zhang, J. & Palmer-Julson, A.A., (1991). Biostratigraphy and isotope stratigraphy of upper Eocene microtektites at Site 612: how many impacts? Palaios, 6: 17-38.

Pearson, P.N. & Palmer, M.R., (1999). Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science, 284: 1824-1826.

Pearson, P.N., (1990). Evolution and Phylogeny of Palaeogene Planktonic Foraminifera. PhD Thesis, Cambridge University, unpublished, 224 pp.

Pearson, P.N. & others, (2001). Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413: 481-487.

Pearson, P.N.; Norris, R.D. & Empson, A., (2001). Mutabella mirabilis gen. et sp. nov., a Miocene microperforate planktonic foraminifer with an extreme level of intraspecific variability. Journal of Foraminiferal Research, 31: 120-132.

Pujol, C., (1983). Cenozoic planktonic foraminiferal biostratigraphy of the South-Western Atlantic (Rio Grande Rise): Deep Sea Drilling Project Leg 72. Initial Reports of the Deep Sea Drilling Project, 72: 623-673.

Saito, T., (1962). Eocene planktonic foraminifera from Hahajima (Hillsborough Island). Trans. Proc. Pal. Soc. Japan, 1(45): 209-225.

Samuel, O., (1972). Planktonic Foraminifera from the Eocene in the Bakony mountains (Hungary). Zbornik Geologickych Vied Zapadne Karpaty, 17: 165-206.

Snyder, S.W. & Waters, V.J., (1985). Cenozoic planktonic foraminiferal biostratigraphy of the Goban Spur Region, Deep Sea Drilling Project Leg 80. Initial Reports of the Deep Sea Drilling Project, 80: 439-472.

Stainforth, R.M.; Lamb, J.L.; Luterbacher, H.; Beard, J.H. & Jeffords, R.M., (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms. The University of Kansas Paleontological Contributions, 62: 1-425.

Toumarkine, M. & Luterbacher, H., (1985). Paleocene and Eocene planktic foraminifera. Plankton Stratigraphy. Cambridge Univ. Press, Cambridge, 87-154 pp.

Toumarkine, M., (1975). Middle and Late Eocene planktonic foraminifera from the northwestern Pacific Ocean: Leg 32 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, 32: 735-751.

Weiss, L., (1955). Planktonic index foraminifera of northwestern Peru. Micropaleontology, 1: 301-319.


Acarinina topilensis compiled by the pforams@mikrotax project team viewed: 20-9-2017

Taxon Search:
Advanced Search
AphiaID: 1027675 Nomenclatural data on WoRMS
Go to to create a permanent copy of this page - citation notes

Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
Captcha Image
Powered by Commentics