Globigerinoides ruber

NB TAXA WHICH ORIGINATE IN THE OLIGOCENE ARE NOT INCLUDED YET
Classification: pf_neogene -> Globigerinidae -> Globigerinoides -> Globigerinoides ruber
Sister taxa: G. altiaperturus, G. conglobatus, G. diminutus, G. elongatus, G. extremus, G. mitra, G. obliquus, G. parawoodi, G. ruber, G. seigliei, G. subquadratus, G. tenellus, G. white, G. sp.,

Taxonomy

Citation: Globigerinoides ruber (d’Orbigny, 1839)
Rank: species
Basionym: Globigerina rubra
Variants:

Catalog entries: Globigerina bulloides rubra pyramidalis; Globigerina cyclostoma; Globigerina rubra;

Type images:

Short diagnosis: Three chambers & pink

NB The short diagnoses are used in the tables of daughter-taxa to act as quick summaries of the differences between e.g. species of one genus. They have initially been copied from the diagnostic characters/distinguishing features sections of the Eocene and Paleocene Atlases, they will be edited as the site is developed.

Description


Diagnostic characters: Low to high trochospiral, subspherical chambers

Aperture: : Primary aperture interiomarginal umbilicalwide arch with rim. Supplementary sutural apertures on spiral side [Aze 2011, based on Kennett & Srinivasan 1983]

Coiling direction (in extant population): mixed


Wall type: Spinose; Cancellate [Aze 2011]

Test morphology: Test medium, low to high trochospire with three subspherical chambers in the final whorl, increasing moderately in size; sutures radial, distinctly depressed; surface coarsely perforate; thin secondary calcite crusts surround the spine bases ; calcite crust developing between spine bases form a honeycomb-shaped surface (Pl. 10, Fig. 6); umbilicus narrow, primary aperture interiomarginal, umbilical with a wide-arched opening bordered by a rim, with two supplementary sutural apertures situated opposite sutures of earlier chambers. [Kennett & Srinivasan 1983]

Size: >250µm

Biogeography and Palaeobiology


Geographic distribution: Warm to cool subtropical. [Kennett & Srinivasan 1983]

Isotope paleobiology: Aze et al. 2011 ecogroup 1 - Open ocean mixed-layer tropical/subtropical, with symbionts. Based on very heavy ∂13C and relatively light ∂18O Cited sources (Aze et al. 2011 appendix S3): Keller (1985); Pearson et al. (2001b); Pearson & Shackleton (1995)

Phylogenetic relations:

Gs. ruber is easily distinguished by the position of the primary and supplementary sutural apertures , which are always symmetrically placed above the suture between two earlier chambers. During the Pleistocene to Recent, Gs. ruber shows a wide range of variation in the height of the spire and tightness of the test coiling. Several taxa have been recognized to reflect these variations - for instance, Gs. pyramidalis (van Den Broeck) for forms with a high trochospire, Gs. elongatus (d'Orbigny, 1826) for forms with tightly coiled trochospire , and Gs. cyclostomus (Galloway and Wissler, 1927) for forms with a more compact test and relatively small aperture. We consider all of these forms to be phenotypic variants of G. ruber. We believe that Gs. ruber evolved from Gs. subquadratus during the late Middle Miocene Zone N15. Instead, Blow (1969) suggested the ancestry of Gs. ruber to be from Gs. bolli within Zone N16 (Late Miocene), and Cordey (1967) suggested that Gs. obliquus was the ancestral form of Gs. ruber. [Kennett & Srinivasan 1983]

Molecular Genotypes recognised (data from PFR2 database, June 2017; References: Aurahs et al. 2009 Insights; Aurahs et al. 2009 ruber; Aurahs et al. 2011; Darling et al. 1997; Darling & Wade 2008; Ujiié & Lipps 2009; Seears et al. 2012). NB G. ruber IIa is now regarded as a separate species, G. elongatus, following Aurahs et al. (2011).

Most likely ancestor: Globigerinoides subquadratus - at confidence level 3 (out of 5). Data source: Kennett & Srinivasan 1983, fig. 10.

Biostratigraphic distribution

Geological Range:
Last occurrence (top): Extant Data source: present in the plankton (SCOR WG138). NB The pink form is absent in the Pacific from 0.12Ma (Wade et al. 2011)
First occurrence (base): within N14 zone (10.46-11.63Ma, base in Serravallian stage). Data source: Chaisson & Pearson (1997)

Plot of occurrence data:

Primary source for this page: Kennett & Srinivisan 1983, p.78

References:

Aurahs, R., Göker, M.; Grimm, G.W.; Hemleben, V.; Hemleben, C.; Schiebel, R. & Kucera, M., (2009). Using the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly Divergent and Length-polymorphic SSU rDNA Sequences. Bioinformatics and Biology Insights, 3: 155–177.

Aurahs, R.; Grimm, G.W.; Hemleben, V.; Hemleben, C. & Kucera, M., (2009). Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber. Mol. Ecol., 18: 1692–1706.

Aurahs, R.; Treis, Y.; Darling, K. & Kucera, M., (2011). A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on molecular and morphometric evidence. Mar. Micropaleontol., 79: 1–14.

Aze, T.; Ezard, T.H.G.; Purvis, A.; Coxall, H.K.; Stewart, D.R.M.; Wade, B.S. & Pearson, P.N.P., (2011). A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews, 86: 900-927.

Blow, W.H., (1969). Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In: Bronnimann, P. and Renz, H.H. (Editors), Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967, Leiden, Netherlands, pp. 380-381.

Cordey, W.G., (1967). The development of Globigerinoides ruber (D'Orbigny 1839) from the Miocene to Recent. Palaeontology, 10(4): 647-659.

d'Orbigny, A., (1826). Tableau methodique de la Classe de Cephalopodes. Annals des Sciences Naturelles, Paris, 7: 245-314.

d'Orbigny, A., (1839). Foraminiferes. In: de la Sagra, R. (Editor), Histoire physique et naturelle de l'Ile de Cuba. A. Bertrand, Paris, France, pp. 224.

Darling, K.F. & Wade, C.M., (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar. Micropaleontol., 67: 216–238.

Darling, K.F.; Wade, C.M.; Kroon, D. & Brown, A.J.L., (1997). Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar. Micropaleontol., 30: 251–266.

Galloway, J.J. & Wissler, S.G., (1927). Pleistocene foraminifera from the Lomita Quarry, Palos Verdes Hills, California. Journal of Paleontology, 1(1): 35-87.

Keller, G., (1985). Depth stratification of planktonic foraminifers in the Miocene Ocean. In: Kennett, J.P. (Editor), The Miocene Ocean: Paleoceanography and Biogeography. GSA Memoir The Geological Society of America, Boulder, Colorado, pp. 1-337.

Kennett, J.P. & Srinivasan, M.S., (1983). Neogene Planktonic Foraminifera. Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania, 1-265 pp.

Pearson, P.N. & Shackleton, N.J., (1995). Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok Guyot. Proceedings of the Ocean Drilling Program, Scientific Results, 144. Ocean Drilling Program, College Station, TX, 401-410 pp.

Pearson, P.N. & others, (2001). Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413: 481-487.

Pearson, P.N.; Norris, R.D. & Empson, A., (2001). Mutabella mirabilis gen. et sp. nov., a Miocene microperforate planktonic foraminifer with an extreme level of intraspecific variability. Journal of Foraminiferal Research, 31: 120-132.

Seears, H.A.; Darling, K.F. & Wade, C.M., (2012). Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology, 12(54): 1-15.

Ujiié, Y. & Lipps, J.H., (2009). Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. J. Foraminifer. Res., 39: 145–154.


logo

Globigerinoides ruber compiled by the pforams@mikrotax project team viewed: 19-11-2017

Taxon Search:
Advanced Search

Go to Archive.is to create a permanent copy of this page - citation notes



Comments (0)

No comments yet. Be the first!

Add Comment

* Required information
1000
Captcha Image
Powered by Commentics